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A simple and novel method to quantify adulterations of extra virgin olive oil (EVOO) with refined olive

oil (ROO) and refined olive-pomace oil (ROPO) is described here. This method consists of

calculating chaotic parameters (Lyapunov exponent, autocorrelation coefficients, and two fractal

dimensions, CPs) from UV-vis scans of adulterated EVOO samples. These parameters have been

successfully linearly correlated with the ROO or ROPO concentrations in 396 EVOO adulterated

samples. By an external validation process, when the adulterating agent concentration is less than

10%, the integrated CPs/UV-vis model estimates the adulterant agent concentration with a mean

correlation coefficient (estimated versus real concentration of low grade olive oil) greater than

0.97 and a mean square error of less than 1%. In light of these results, this detector is suitable not

only to detect adulterations but also to measure impurities when, for instance, a higher grade olive

oil is transferred to another storage tank in which lower grade olive oil was stored that had not been

adequately cleaned.
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INTRODUCTION

The most important requirement of consumers is to have the
highest quality in all bought goods. This requisite is even more
obligatory when the products present health implications for
consumers. Regretfully, in the food sector, we are still faced with
the problem of adulteration. A deplorable example of this is the
case of edible rapeseed oil with aniline-based compounds
(commonly called Spanish toxic oil syndrome). This adulteration
caused serious illness and continues to affect more than 20000
people, some of whom have died (1).

Given that extra virgin olive oil (EVOO) is the only edible oil
which comes directly from the juice of fruits (the olive), EVOO is
one of the most valuable oils in the world. Because of this, the
adulteration in the edible oil sector is mainly focused on EVOO.
The adulteration is habitually carried out by blending EVOO
with low-grade olive oils (olive-pomace oil or refined olive oil) or
with seed oils (2-4). The detection and quantification of adul-
terant oil concentration depends on the adulterated compound
concentration and the physicochemical similarity between it and
EVOO (1-3, 5).

Although there is no single analytical method to determine the
adulteration (6), in order to fight against these fraudulent
activities, physicochemical properties (density, refractive index,
etc.) and/or key compound concentrations (polyphenols, acids,
sterols, etc.) in the EVOOmust be measured (7,8). The composi-
tion of oleic samples can be determined using technical analyses
such as nuclear magnetic resonance spectroscopy (9), Fourier

transform Raman spectroscopy (10), fluorescence spectroscopy,
high-performance liquid chromatography (11-12 ), UV-vis
spectroscopy (13, 14), etc.

Once the information has been taken from the analytical
equipment, powerful statistical techniques are usually applied
to extract the relevant information (Figure 1). Depending on the
requirement of the analyses and the nature of the information,
these data can be analyzed by techniques based on linear
(principal component analysis, multivariable regression techni-
ques, etc.) or nonlinear algorithms in more complex
situations (1-4, 9).

Due to the fact that the adulteration of olive oil not only is an
economic fraud but also can be damaging to health, a reliable,
fast, simple, and cheap method to detect these undesirable
compounds is required. Currently, chemometric tools based on
nonlinear algorithms present the most successful results (5, 15).
As tools based on chaotic parameters (CPs) can detect slight
variations in initial experimental conditions (16),models based on
CPs could be adequate to determine the adulteration with only
small concentrations of low-grade olive oils. For these reasons
and with the goal of finding the simplest (easiest chemical and
mathematical performance) model, linear algorithms based on
chaotic parameters have been tested here.

In the chemical field, these types of chaotic models have only
been successfully applied by researchers. Among others, it has
been applied to the modelization of simple microbial systems
consisting of two microbial populations competing for a single
nutrient (17). Also, Torrecilla et al. determined noisy signals from
UV spectrophotometer, thermogravimetric analyzer (TGA), and
differential scanning calorimeter (DSC) apparatus in the ionic
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liquid field (16). To the best of our knowledge, in the edible oil
field, there are nomodels based on chaotic parameters. Given the
successful results achieved in other scientific fields, a model based
on chaotic parameters has been applied to quantify the adultera-
tion of EVOO with refined olive oil or refined olive-pomace oil
by chaotic parameters and regressionmodels usingUV-vis scans
of adulterated samples. Once the model was optimized, it was
tested to detect adulteration with refined olive oil and refined
olive-pomace oil.

MATERIALS AND METHODS

Instrumentation and Oil Samples. A Varian Cary 1E UV-visible
spectrophotometer was employed for absorbance measurements using
quartz cells of 1 cmpath length. All stock solutionswere prepared using an
AG 245 Mettler Toledo analytical balance (precision 0.01 mg).

The botanical origin and quality of all samples of extra virgin olive oil
were guaranteed by the supplier (Table 1). In addition, samples of refined
olive oil (ROO) and refined olive-pomace oil (ROPO) were provided by
Spanish companies, which are shown inTable 1. Allwere stored in the dark
at room temperature until the day of analysis. To estimate and detect the
adulteration of EVOO with other low-cost olive oils, mixtures containing
EVOO and refined olive oil or refined olive-pomace oil were prepared.
Following the procedure shown in the Official Journal of the European
Union (Commission Regulation (EC) No 640/2008, Annex IX), all the
samples were prepared and diluted in isooctane (C8H18 g99.5% purity,
from Merck).

Chaotic Parameters Used. To detect other low-grade olive oils in the
EVOO several chaotic parameters (Lyapunov exponent, autocorrelation
functions, and fractal dimensions) have been calculated by UV-vis scans
of adulterated EVOO samples.

Lyapunov Exponents. Lyapunov exponents (LEs) are always real
numbers and provide additional useful information about the system
studied (18). These exponents characterize the dynamics of a complex
process and quantify the average growth of infinitesimally small errors at
initial points. LE values characterize the rate of separation of infinitesi-
mally close trajectories. This can be used to measure the sensitivity of a
system’s behavior to initial conditions (19). The LE parameter has been
calculated by following eq 1.

LE ¼ 1

Δλm

Xm
k ¼1

log2
Lðλk Þ

Lðλk -1Þ ð1Þ

where Δλm, k and L(λk) are the prediction wavelength interval, the
wavelength, and the Euclidean distance between the developed points in
the space, respectively. For instance, considering p1 at (λk-1,Absorbancek-1)
and p2 at (λk, Absorbancek), the Euclidean distance between p1 and p2
(L(λk-1)) is [(λk-1 - λk)

2 þ (Absorbancek-1 - Absorbancek)
2]1/2. Detailed

information can be found elsewhere (18, 19). This parameter is one of the
most sensitive in determining the chaotic dynamics of processes (18).
Depending on the sign of the maximal LE (MLE), different types of
attractors (dynamic systems evolve after a long period of time) can be
found. MLE < 0 represents stable fixed, MLE = 0 or MLE = ¥ implies
stable limit cycle or noise, respectively, and 0 < MLE < ¥ implies chaos,
whichmeans that neighboring points of trajectories in the space diverge (20).

Autocorrelation Functions (RΔλ). These parameters measure linearly
how strongly on average each data point is correlated with wavelength lag
(Δλ) (eq 2) (20). These are the ratio of the autocovariance to the variance of
the data. In general, RΔλ is between 1 (small k) and 0 (large k) (18)

RΔλ ¼
PN-k

n¼1

ðXn -X
_ÞðXn-k -X

_ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN-k

n¼1

ðXn -X
_Þ PN-k

n¼1

ðXn-k -X
_Þ2

s ð2Þ

where X, X
_
and N represent the absorbance set of the measurements by

UV-vis spectrophotometry, their average, and the total number of data
sets, respectively. Given that the Δλ value ranges between 0 and 650 nm
withΔλ=50nm (14parameters) (18,19), in the case ofk=50nm(in time
data series, k is commonly called lag time), throughout the work RΔλ

values are referred to as R50.

Fractal Dimensions. The dimensions of a line, plane, and volume are
well-known.When the image is not exactly one of the aforementioned, the
calculation of its dimension is more difficult, and this even more so when
the dimension of a fractal image is required. In these cases, this dimension
can be calculated by eq 3

fractal dimension ¼ log P

log M
ð3Þ

whereP andM are the number of subspaces into which the initial area can
be divided and the magnified factor, respectively. For instance, the
Sierpinski triangle fractal dimension is 1.584 (P = 3 and M = 2). When
the fractal dimension of experimental curves is required, its calculation
becomes more complex. In these cases, the fractal dimensions quantita-
tively describe how an object fills its space (21). In general, these fractal
dimensions are real numbers that quantitatively describe how an object
fills its space. In plane geometry, objects are solid and continuous, and
given that they have no holes, they have integer dimensions. Fractals are
rough and often discontinuous, and so they present noninteger dimen-
sions. From a fractal geometry point of view, the fractal dimension is a
measure of complexity that is used to describe the irregular nature of lines,
curves, planes, or volumes. In this work, the regularization dimension
(RD) and the box dimension (BD) using the plain box method have been
computed by Fraclab version 2.0 (Toolbox of Matlab version 7.01.24704,
R14) (22). Considering the original signal as fractal, its graph will have an
infinite length. Taking into account RD and the fact that all regularized
versions have a finite length, the RD measures the speed at which this
convergence to the infinite takes place. To calculate BD, the software
works exactly in the same way as when it computes the regularization
dimension, except that in this case different box sizes are tested. In almost
all cases, the estimation of fractal dimension by the box method is less
accurate than the calculation by the regularization method. All necessary

Figure 1. General scheme to detect/determine lack of quality.

Table 1. Botanical Origin, Brand, and Number of Oil Samples Used

type of olive oil no. of samples brand

extra virgin olive oil 396 Aceites Borges Pont SAU

refined olive oil 189 KOIPE, SOS Cu�etara SA

refined olive-pomace oil 189 DIA
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parameter values to calculate RD and BD were selected by default
configuration settings of the software used (22).

Learning, Verification, and Validation Samples. Every data set of
the learning and verification samples is composed of 17 aforementioned
chaotic parameters (14 autocorrelationparameters, 1 Lyapunov exponent,
and 2 fractal dimensions) with their respective concentrations of low-grade
olive oil in percent (ROO and ROPO). These parameters were calculated
from the UV-vis scans from all binary mixtures composed of EVOO,
ROO (0-10% w/w), or ROPO (0-10% w/w). As an example, UV-vis
scans of adulterated samples composed of EVOO and ROO (0.9 and 5%
w/w) and ROPO (0.8 and 5% w/w) are shown in Figure 2. For each
concentration, three different solutions were made and each mixture was
scanned three times. The mean of the three concentration values of refined
olive oil and refined olive pomace oil in extra virgin olive oil is shown in
two tables in Figure 3. Although the EVOO samples are adulterated with
ROO and ROPO, as can be seen, both profiles with similar concentration
values are similar. The learning and verification samples are composed of
378 data sets, which were distributed into 189 for EVOOþ ROO and 189
for EVOO þ ROPO. The only difference between the verification and
learning samples is that the latter is composed of 80% (302 data sets) of
data and the former of the remaining 20%. Taking into account that every
datumof the verification sample should be interpolatedwithin the learning
range, the data were randomly distributed between both samples (23).

On the other hand, with relation to the external validation process, the
aforementioned chaotic parameters have been calculated using different
UV-vis scans from binary mixtures composed of EVOO and ROO or
ROPO. Using these chaotic parameters and their respective adulterating
oil concentrations, an external validation sample has been made. It is
composed of the results achieved using low-grade olive oils. This external
validation sample presents the same format as the learning and verification
samples (23).

Linear Models. The linear models tested in this work are considered
linear in the parameters, also called statistically linear (24). Linear and
multiple linear regressions are the most widely used and known modeling
methods. They have been adapted to a broad range of situations. In a

multivariate case, when there is more than one independent variable, the
regression line cannot be visualized in two-dimensional spaces. In this case,
a linear equation containing all those variables can be constructed (eq 4)

y ¼ R0 þ
Xn
i ¼1

Ri xi þ ε ð4Þ

where y, n, Ri (R0, R1, ..., Rn), xi (i = 1, 2, ..., n), and ε represent response
variables (adulterating concentration), number of observations, para-
meters of the model, independent variables (chaotic parameters), and
randomerror, respectively (25). The error term is an unobservable random
variable that represents the residual variation and will be assumed to have
zero mean, constant variance, and a normal distribution. The linear
models are not limited to lines or planes but include a fairly wide range
of shapes (24). Due to its simplicity (eq 4), this type of linear model has
been used here. The linear models and statistical analyses were carried out
by SPSS version 15.0.1.

RESULTS AND DISCUSSION

Adatabase formedbyquantity of low-grade olive oil, Lyapunov
exponent, autocorrelation coefficients (14 parameters), and two
fractal dimensions was made (vide supra). In the first study, the
adulteration of EVOO with refined olive oil and refined olive-
pomade oil was individually investigated. Then, a globalmodel to
estimate the adulteration with low-grade olive oil was proposed.
Finally, the global model was externally validated using two
external validation samples (23). Given that the chaotic para-
meters are defined for specific initial experimental conditions,
every equation is only adequate in the detection of the adulterated
oils for which it has been established.

Figure 2. UV-vis scans of mixtures composed of extra virgin olive oil and
(a)ROO (;, 0.882%; - - -, 4.819%or (b)ROPO (;, 0.834%; - - -, 4.562%).

Figure 3. Mean of three experimental concentration values of refined olive
oil (ROO) and refined olive-pomace oil (ROPO) (in tables) and their
estimations using eqs 5-7 in the verification process: (a) UV-vis
concentrations of ROO/EVOO mixtures (-2-)and ROO concentrations
estimated by eqs 5 and 7 and their respective linear correlations (9, b,

3 3 3 , and - - -, respectively); (b) UV-vis concentrations of ROPO/EVOO
mixtures (-2-) andROPO concentrations estimated by eqs 6 and 7 and
their respective linear correlations (9, b, 3 3 3 , and - - -, respectively).



1682 J. Agric. Food Chem., Vol. 58, No. 3, 2010 Torrecilla et al.

Adulteration of EVOO with ROO. In order to determine the
most suitable model to estimate the concentration of refined olive
oil (dependent variable) and as a consequence of the combination
of the aforementioned 17 chaotic parameters (independent
variables), 131072 models were designed. Here, 6 models with
the best statistical results using 6 respective groups formed by
1-6 independent variables and their statistical results are shown
in Table 2. As expected, the models, which use more independent
variables, can better explain the response surface. Thus, the
statistical results improved when more independent variables
were used (Table 2). As there are nearly 30 data sets (189/7) for
each parameter to be optimized, the 6-order model can be reliably
used. Itmight beworthmentioning that, in all proposedmodels to
estimate the ROO concentration, at least one fractal dimension is
used.

Although the aforementioned models can be used to easily
determine the adulteration of EVOO with ROO, in order to find
the most reliable model using the 17 independent variables, the
model with the best statistical results formed by 10 variables has
been selected (eq 5; R2 > 0.980, MSE < 0.312). As can be seen,
there are nine independent variables related to the autocorrela-
tion functions and a fractal dimension.Although in thismodel the
Lyapunov exponent is not used, it is used in other models with
statistical slightly poorer results (Table 2).

½ROO� ¼ 140:998-791:609 3R50þ 656:991 3R100 -554:949 3R150

þ 815:393 3R200 þ 961:940 3R300 -1203:130 3R350

þ 401:341 3R450 þ 282:176 3R500 þ 40:927 3R600 -95:083 3RD

ð5Þ
Different combinations of all chaotic parameters presented

here can suitably quantify the ROO concentration as an adulter-
ating agent of EVOO when the former concentration is less than
10%. To sum up, the UV-visible scans of oil sample (EVOO þ
ROO) and the chaotic parameters calculated from them can
detect and determine the adulterating agent concentrations using
a simple method. Nevertheless, better statistical results can be
achieved establishing nonlinear models between the aforemen-
tioned chaotic parameters and ROO concentrations, but the
model, and thus its calculation procedure, is more complex.
The estimated concentrations of ROO using eq 5 are compared
with their respective UV-vis concentrations in Figure 3.

Adulteration of EVOO with ROPO. To detect/quantify the
concentration of ROPO as an adulterating agent in EVOO
samples by the aforementioned mathematical procedure,
131 072 linear regression models have been defined. The six most
suitable model using groups formed by 1-6 independent vari-
ables and their statistical results are shown in Table 3. It is worth
pointing out that only RD-independent variables can linearly
describe the concentration of ROPO (R2 > 0.87, MSE< 1.017).
In addition, different combinations of all other chaotic para-
meters presented here can more adequately quantify the adulter-
ating agent of EVOO when the ROPO concentration is less than
10%. A comparison of Tables 2 and 3 shows that linear models
based on the chaotic parameters studied can better quantify the
ROPO than they can ROO as an adulterating agent of EVOO.

Although the aforementioned models can be used easily and
reliably to determine the adulteration of EVOO with ROPO, the
regression model with the best statistical results using 10 inde-
pendent variables is shown in eq 6 (R2 > 0.997, MSE < 0.035).
More independent variables could be used to make a linear model,
but the statistical results did not improve sufficiently (R2 from0.998
to 0.999 and the MSE from 0.035 to 0.023) to justify this step.

½ROPO� ¼ -385:729-810:572 3R0 þ 1407:840 3R50

-2361:780 3R100 þ 122:416 3R150 þ 826:248 3R200-566:804 3R250

þ 833:950 3R300 -209:442 3R350 -1:197 3 10
7
3LEþ 7:214 3BD

ð6Þ
To sum up, simple linear regression models designed by the

chaotic parameters calculated from theUV-vis scans of adulterated
oil samples can accurately detect/determine the adulterating agent
concentration.The estimated concentrations ofROPOusing eq 6are
compared with their respective UV-vis concentrations in Figure 3.

Adulteration of EVOO with ROO and ROPO. Bearing in mind
that the type of adulteration of EVOO is a priori unknown, the
estimation of a unique concentration of ROO and ROPO
simultaneously is recommended. With this objective, a new
mathematical relation between chaotic parameters of UV-vis
scans of mixtures of EVOO and ROO or ROPO and the
respective concentrations of adulterating compounds of EVOO
samples has been proposed. Following the aforementioned
mathematical procedure, the most suitable models using indivi-
dual combinations formed by 1-6 independent variables and

Table 2. Estimation of ROO as Adulterating Agent of EVOO by Linear Regression Models

R0 R1 R2 R3 R4 R5 R6 R2a MSEa

121.845 -101.734 3RD 0.589 3.424

-28.844 -27.774 3R0 66.436 3BD 0.831 1.485

-23.353 -43.100 3R200 7.150 3 10
6 LE 61.024 3BD 0.874 1.170

88.741 -52.827 3R200 -16.835 3R600 -64.809 3RD 36.728 3 BD 0.913 0.860

53.125 281.152 3R200 354.967 3R300 -502.236 3R350 46.340 3R450 -98.092 3RD 0.944 0.591

33.011 221.437 3R200 286.566 3R300 -405.294 3R350 33.356 3R450 -79.364 3RD 18.613 3BD 0.951 0.557

a ½ROO� ¼ P6
i¼0

Ri.

Table 3. Estimation of ROPO as Adulterating Agent of EVOO by Linear Regression Models

R0 R1 R2 R3 R4 R5 R6 R2a MSEa

119.780 -100.559 3RD 0.874 1.017

80.231 -398.908 3R50 214.519 3R550 0.911 0.762

119.176 37.804 3R250 38.110 3R650 -112.208 3RD 0.938 0.561

85.776 107.317 3R450 -113.251 3R500 93.715 3R550 -79.752 3RD 0.969 0.300

112.649 -271.189 3R0 -371.456 3R100 147.851 3R150 307.899 3R550 -1.354 3 10
7
3 LE 0.981 0.195

172.702 -237.429 3R0 -210.998 3R100 122.129 3R450 218.537 3R550 -1.248 3 10
7
3 LE -43.862 3RD 0.990 0.110

a ½ROPO� ¼ P6
i¼0

Ri.
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their statistical results are shown (Table 4). As expected, due to
the chemical differences between ROO and ROPO, the statistical
results are the poorest of all groups studied. Thus, a new model
using 10 independent variables has been proposed (eq 7; R2 >
0.972, MSE < 0.350).

½adulterated oil� ¼ 34:853-67:939 3R100 þ 157:249 3R250

þ 77:573 3R400 þ 186:653 3R450 -134:526 3R500 þ 59:905 3R550

-54:715 3R650 -4:570 3 10
6
3LE-82:846 3RDþ 20:747 3BD

ð7Þ

The most accurate quantification of every adulterating oil is
determined using their respective individual models (eqs 4 and 5

for ROO and ROPO, respectively).
Taking into account the impossibility of previously determin-

ing which type of adulterating agent is present, in line with the
statistical results (R2 > 0.972, MSE < 0.350), the model
described by eq 6 is suitable to estimate simultaneously the
concentrations of ROO and ROPO as adulterating compounds
in EVOO samples (see Figure 3).

External Validation of the Global Model. To validate the model
described by eq 7, a new database has been used (vide supra). It
consists of chaotic parameters calculated by 18 UV-vis scans
fromnew samples containingEVOOandROOorROPOranging
between 0 and 10% (23). As can be seen in Figure 4, the
adulteration of EVOO with ROO and ROPO can be detected
using eq 7. The correlation coefficients and MSE values of
estimated versus real values are 0.977 and 0.965 and 0.969 and
1.117, respectively. These statistical results lead us to think that
linear models based on the chaotic parameters can be used to
determine on line adulteration with low-grade olive oils such as
ROO and ROPO.

One of the most important specifications for detecting adulte-
rations is the lower limit of detection. Here, using only one model
(eq 7), the lower limit of detection of adulteration during the
external validation process was 0.6 and 1.4% w/w for refined
olive oil and refined olive-pomace oil concentrations, respec-
tively. These values are less than for othermodels, such as nuclear
magnetic resonance spectroscopy (NMR)/multivariate statistical
analysis (5% w/w (26)) or the synchronous fluorescence method/
partial least-squares regression (2.6% w/w (27)). Given the
simplicity of the analytical equipment used here in comparison
with the NMR apparatus, this difference in the lower limit of
detection shows the power of chaotic parameters concerning
adulteration. This widens the horizon to design tools which solve
the problem of illegal adulterant processes, which in some cases
can cause serious health damage in addition to economic
fraud (1).

In light of these results, this is a reliable tool when the detection
of ROO and ROPO concentrations of less than 10% is required.
Therefore, it is suitable not only to detect adulterations but also to
measure impurities when high-grade olive oil is transferred to

other storage tanks that had contained lower grade olive oils and
were not adequately prepared. In the latter application, given that
the nature of the impurity is known, a specific model can be used
(eq 5 or 6 for ROO or ROPO, respectively). In the statistical field
these chaotic parameters, which can be calculated easily, extract
the essential information from huge databases such as UV-vis
scans.

As a confirmation of the report by Devaney, this paper makes
apparent the importance of using two different nature algorithms
to model the chaotic behavior of a system, viz. chaotic dynamics,
which studies the disordered movement of objects and fractal
geometrics that analyze static images of the UV-vis scans of
adulterated samples of EVOO (21).

The detection of refined olive oil and refined olive-pomace oil
as adulterating compounds of EVOO samples represents the first
step in the design of a more general tool which can detect even
more adulterating agents simultaneously.
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